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EuAg,Aly;_, phases adopting the BaHg;;-type structure (space group Pm3m, Z = 3) were synthesized
with high yield by arc melting a mixture loaded as “EuAgs sAl; 5 and annealing at 500 °C for 40 days.
This phase has a very narrow phase width around EuAg, 0Al; o; and it is unstable at 600 and 700 °C, at
which it transforms into other phases. Magnetometry indicates that Eu is divalent, which gives the valence
electron concentration per Ag/Al atom as 2.45 ¢ /atom, higher than in the BaCd;;-type phases in the
Eu—Ag—Al system (2.10—2.30 e /atom). First principles electronic structure calculations, using a
computational model structure built by simulating the crystallographic results as well as maximizing the
number of heteroatomic (Ag—Al) contacts, can explain why the cubic BaHg;-type structure is favored at
higher valence electron concentration than the tetragonal BaCd,-type structure.

Introduction

Polar intermetallics' > represent a growing class of
compounds bridging classical, Hume—Rothery electron
phases* and Zintl phases.® Similar to Zintl phases, polar
intermetallics also consist of elements with considerable
differences in electronegativity, but their structures can-
not be understood with the octet rule, which applies to
Zintl phases; instead, as in Hume—Rothery phases, they
are largely determined by valence electron count. How-
ever, unlike Hume—Rothery electron phases, polar inter-
metallics often form kaleidoscopic complex structures,
for example, NaZn3-, ThMn,-, BaCd,,-, and BaHg,-
types, in which, just as in Zintl phases, the “cations”, that
is, the electropositive metals, have large coordination
numbers. Many recent reports also showed that this class
of compounds provides a wealth of quasicrystalline
phases and their crystalline approximants.® Because of
such structural abundance and complexity, composition-
structure relationships of polar intermetallic compounds
are complicated and still remain a challenge to be understood.
Further systematic investigations into polar intermetallics
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are necessary; and these investigations will benefit from a
synergism between experiment and theory.

During our investigations into the composition-structure
relationship in polar intermetallics, significant effort has
been devoted to the RE(rare earth)—Ag— Al systems due to
their structural abundance.” Researchers have obtained
kaleidoscopic complex structures from these systems, in-
Cluding the BaCdl 1= BaHgl 1-s Tthil7-, Th22n17-, CaCuS-,
and BaAls-types.® The iso-compositional structure types
(i.e., the BaCd;;- vs BaHg;;-types and the Th,Nij;- vs
Th,Zn,;-types) often compete within a single RE—Ag—Al
system as its composition varies. For instance, in Yb—
Ag—Al, the BaCd,-type structure forms at YbAgs3Als
and the BaHg, -type structure forms at YbAg,Al,.* Simi-
lar results have also been obtained in our previous work with
the Eu—Ag—Al system.” Further investigations into these
competing structure types can deepen our understanding of
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these structures themselves, as well as how they are related
to composition.

The BaHg;;-type structure is one of the most rarely
observed among all of the complex structures obtained in
RE—Ag—Alternaries. It has been reported only with RE =
Ce.® Yb.® and Eu’ without crystallographic details
(only lattice parameters available, without atomic coor-
dinates or thermal parameters). Experimental disagree-
ment also occurs in the Ce—Ag—Al system. Although
Cordier obtained BaHg;-type CeAg; ;Al; ¢ by synthesiz-
ing at 1000—1400 °C and annealing at 800 °C.** this
phase did not occur in Kuz’'ma’s phase diagram study at
597 °C.* which was proposed as a temperature effect. The
recent reports from Latturner et al. demonstrated more
complexity of the BaHg; -type structure.'® Their study of
RE—Au—Aland RE—Ag—Alsystems showed that, in an
Al flux, early transition metals (e.g., Ti and Mo) have a
template effect and are essential in the formation of a
stuffed BaHg;-type structure, which is a quaternary
phase, RE3(Au/Ag)s, AlyT (T is the early transition
metal). The authors also analyzed the synthesis method
adopted by Cordier®! and speculated that the possible
inclusion of Mo (the crucible material) induced the for-
mation of the BaHg;-type structure.

Therefore, although the BaHg;;-type structure has
been long observed in RE—Ag—Al systems, there are still
many unsolved “mysteries” about it, for example, what
the phase width is, and how temperature and early
transition metals affect its formation. Moreover, site
sharing and site preference are commonly observed for
Ag and Al atoms in RE—Ag—Al systems. How are Ag
and Al distributed in the BaHg;,-type structure? Lastly,
how does this structure type compete with the BaCd,;-
type structure during changes in composition, viz., the
molar ratio between Ag and Al, of a RE—Ag—Al system?
To answer these questions, we continued our previous
work with the EuAg Al;_, systern9 and investigated
BaHg;-type phases using both experiments and quan-
tum mechanical calculations.

Experimental Section

Syntheses. Pure metals were used for syntheses: Eu (rods,
Ames Laboratory, 99.99%), Ag (slugs, Alfa Aesar, 99.99%),
and Al (foil, Tenneco). In our previous study of EuAg Al;;_,
the BaHg,-type structure was observed in the systems loaded
with “EuAgsAl;” and “EuAg;Alg”.° To find out its homogene-
ity width, we varied the loading composition from “EuAg,Al;”
to “EuAgAl;y”. For each loading composition, an approxi-
mately 0.5 g mixture of pure metals was arc melted under an
argon atmosphere into a silvery button, which was turned over
and remelted five times to ensure thorough reaction and homo-
geneity. There was some ash generated during melting, but the
weight loss was always lower than 1 wt %. Every product was
stable in air and water but dissolved in 40 wt % nitric acid. The
silvery button was then broken into halves. One-half was char-
acterized immediately; and the other half, before characterization,

(10) (a) Latturner, S. E.; Kanatzidis, M. G. Inorg. Chem. 2004, 43, 2.
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was sealed in a tantalum tube under argon atmosphere, which
was then sealed in an evacuated silica jacket and annealed in a
tube furnace at 500 °C for 40 days.

X-ray Crystallography. Powder X-ray diffraction (XRD) was
carried out on a Huber Imaging Plate Guinier Camera G670
using monochromatized Cu Ko, radiation (4 = 1.54059 /K). This
diffractometer has been calibrated with standard silicon powder
(NIST, a = 5.430940 4+ 0.000035 A). The exposure time was 1 h
and the step size of 26 was 0.005°. The Le Bail technique'' was
used for full pattern decomposition, and the Rietveld method'?
was employed to refine the crystal structure, both of which were
accomplished with the software LHPM-Rietica."?

Small crystals selected from the crushed “EuAgssAl;s”
sample were mounted on the tip of capillary with epoxy for
single-crystal XRD experiments, which were carried out at room
temperature on a STOE IPDS diffractometer equipped with Mo
Ka radiation (4 = 0.71073 A). 80 frames were collected at ¢ =
130° with w ranging from 42 to 122° with the step size of 1°, and
the exposure time of 1 min per frame. All data collection,
integrations, cell refinements, and absorption corrections were
done using X-Area."* Using SHELXTL,' the crystal structure
was solved with direct methods and refined by full-matrix least-
squares on F2.

Magnetometry. Temperature-dependent magnetic suscept-
ibility was measured with a 6.3 mg sample taken from the
annealed product with the loading composition “EuAgs sAl; 57,
which is a “pure phase” adopting the BaHg-type structure
according to powder XRD. Using a Quantum Design MPMS
XL Superconducting Quantum Interference Device (SQUID)
magnetometer, at 1 kOe fixed magnetic field, the magnetic
susceptibility (y) was measured as the temperature (T) varied
from 5 to 300 K. We fitted the 1/ vs T curve with Curie—Weiss
law to calculate the effective moment (uer) and the valency
of Eu.

Microscopy. The annealed sample loaded as “EuAg; sAl; 5"
was also characterized by scanning electron microscopy (SEM)
and energy-dispersive spectroscopy (EDS) to examine its homo-
geneity and to check the presence of early transition metals,
including W (electrode material of the arc melter), Ti (oxygen
getter), and Ta (container for annealing). SEM was accom-
plished using a Hitachi S-2460N variable-pressure scanning
electron microscope, and EDS was performed with an Oxford
Instruments Isis X-ray analyzer. Several grains were taken at
random from the broken “EuAgs sAl; s” sample, embedded in
epoxy, polished, coated with ca. 20 nm of carbon, and examined
in high vacuum mode (ca. 5 x 10~ Torr). The accelerating
voltage was 20 kV and the beam current was ca. 0.5 nA, which
produced an X-ray count rate of 3000 cps. Multiple points were
examined for every sample grain. The standards used for
quantitative compositional analysis were elemental Ag and Al,
and EuAl,. The precision of the compositional analysis under
these conditions is within a few tenths of weight percent.

Electronic Structure Calculations. To study the electronic
structure of the BaHg;-type EuAg.Al;;_,, we constructed a
few model structures according to the crystallographic results
for first principles calculations. Details of these models can be
found in the Computational Models section. Both the Stuttgart
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Figure 1. Powder XRD patterns of arc melted and annealed samples with various loading compositions. Le Bail refinement was applied to every pattern.

Tight-Binding, Linear-Muffin-Tin Orbital program with the
Atomic Sphere Approximation (TB-LMTO-ASA)'® and the
Vienna ab initio simulation package (VASP)'7 ™ were employed
to calculate the total energies and electronic structures of these

models.
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For TB-LMTO-ASA, we used the von Barth—Hedin local
density approximation® to treat electron exchange and correla-
tion energy; and we included these atomic orbitals in the basis
set: the 6s, 6p (downfolded?"), and 5dstates of Eu; the s, Sp,and
4d states of Ag; and the 3s, 3p, and 3d (downfolded) states of Al.
Eu 4f'states were excluded because magnetometry indicated that
Euisdivalent and, thus, its 4felectrons are localized in half-filled
4f orbitals. The Wigner—Seitz radii of the atomic spheres were
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Figure 2. Powder XRD patterns of arc melted and annealed “EuAg; sAl; s samples. Le Bail refinement was applied to (a), (c), and (d); and Rietveld

refinement was applied to (b).

2.13 A for Euand 1.57 A for both Ag and AL This filled the unit
cell with a 9.566% overlap without introducing any empty
spheres; an 8 x 8 x 8 k-points mesh was used in the first Brillouin
zone for integration. The density of states (DOS) and crystal
orbital Hamiltonian populations (COHP)>* curves were evalu-
ated and plotted.

VASP calculations were completed to compare the total
energies of the model structures. We used the projector aug-
mented-wave (PAW) pseudopotentials> and the Perdew—Burke—
Ernzerhof generalized gradient approximation (GGA-PBE).**
The energy cutoff was 343.6 eV. Reciprocal space integrations
were completed over a 7 x 7 x 7 Monkhorst-Pack k-points
mesh® with the linear tetrahedron method.*® With these set-
tings, the calculated total energy converged to less than 1 meV
per atom. The DOS curve calculated by VASP was also plotted
and compared with that from TB-LMTO-ASA calculations.

Results and Discussions

Synthesis and X-ray Crystallography. Our previous
work” indicated that both loading composition and an-
nealing are pertinent to the formation of the BaHg; ;-type
structure in EuAg,Al;,_,. This cubic structure type was
not detected by powder XRD when x = 5—8 in the load-
ing composition “EuAg,Al;;_,”; but was obtained when
x = 3 and 4. For both of these two systems, annealing at
500 °Cincreased the abundance of the BaHg;-type phase
(see its strongest peak at ca. 34.3° in Figure 1(a)—(d)),

(22) Dronskowski, R.; Blochl, P. J. Phys. Chem. 1993, 97, 8617.

(23) Dresse, G.; Joubert, D. Phys. Rev. 1999, 59, 1758.

(24) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77,
3865.

(25) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13, 5188.

(26) Blochl, P. E.; Jepsen, O.; Andersen, O. K. Phys. Rev. B 1994, 49,
16223.

especially for the “EuAg;Alg” system, in which it is the
dominant phase.

To improve the abundance of the BaHg;-type phase,
we adjusted the loading composition. At first, we tested
two loading compositions richer in Al than above, viz.,
“EuAg,Aly” and “EuAgAl;o”. The diffraction patterns of
these arc melted and annealed samples are shown in
Figure 1(e)—(h). These two loading compositions pro-
duce mixed phases, among which the BaHg;-type struc-
ture occurs, and annealing at 500 °C also slightly increa-
sed its abundance. However, its abundances in these two
samples are both lower than in the “EuAg;Alg” sample
(Figure 1(d), (f), (2)).

We then made the Al content lower than in “Eu-
Ag;Alg” and loaded “EuAg; sAl;s”. The powder XRD
patterns for arc melted and subsequent annealed samples
are in Figure 2. The pattern of the arc melted sample
(Figure 2(a)) is close to the arc melted “EuAg;Alg” system
(Figure 1(c)). After annealing at 500 °C, all peaks in the
powder pattern can be indexed with a single BaHg;,-type
phase (Figure 2(b)). It is noticeable that the backgrounds
in these diffraction patterns are large (ca. 1000 counts).
This is much higher than the background in a diffraction
pattern of the NIST Si powder (Supporting Information
(SI)), which was collected with the same exposure time
and gives a background at ca. 400 counts. Therefore, this
enhanced background could be accounted for by the
presence of amorphous phase(s) in the “EuAg; sAly 5~
sample, although EDS measurements are consistent with
the crystalline phases identified in each pattern shown in
Figure 2. A second possible reason for this background
originates from the intrinsically disordered distribution
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of Agand Al atoms within each component. At this point,
we cannot identify unequivocally the cause of the en-
hanced background.

Rietveld refinement was then applied to the powder
pattern and the results are listed in Tables 1 and 2.
Although powder XRD characterizes this sample as a
“pure phase”, it was very difficult to find a good quality
single crystal from this annealed “EuAg; sAl; 5" sample.
We extracted only one single crystal which was qualified
and carried out single crystal XRD and refinement upon
it. The results are also listed in Tables 1 and 2.

Comparison shows that the Rietveld and the single
crystal refinements agree well with one another in lattice
parameter (with 0.2% difference) and atomic positions.
The refined compositions differ slightly from one another:
the single crystal technique gives EuAgs s52)Al7 52), which
is very close to the loading composition; but Rietveld
refinement gave higher Ag content, EuAgs ¢7(3)Al7 333).
Moreover, the isotropic displacement parameters (Usg,)
refined by the Rietveld technique are much smaller.

Just like many other RE—Ag—Al phases, Ag and Al
share the same sites (8¢, 124, 12)) in the asymmetric unit,
but these sites are not shared equally. Compared with the
average Ag/Al ratio (3.5/7.5 = 0.32/0.68), the 8g site
prefers Ag and the 12/ site favors Al. An even higher
preference occurs on the 1b site, which is exclusively
occupied by Ag. We attempted refinement with this site
being shared by Agand Al: it gave the occupancy Ag/Al =
0.94/0.06(7); and the corresponding R values are Rl =
0.0599 and wR2 = 0.0961, which is not a statistically
significant improvement over the other refinement, ac-
cording to a Hamilton test.’’ Therefore, we assigned
solely Ag to the 15 site. This result agrees with Cordier’s
study?® of BaHg; ;-type CaAg4Al;, in which this site was
also filled with only Ag.

The BaHg-type structure has been described in
some earlier reports.”® 3% It can be understood by a struc-
ture scheme based on a “tetrahedron star”, which is a
tetrahedron with every face capped by an atom. In a unit
cell of BaHg-type EuAg; sAl; 5 (Figure 3(a)), there are
eight tetrahedra formed by Ag/Al2(8g) and Ag/Al4(12))
sites. The Agl(1b) site caps one face of each tetrahedron,
which makes Agl(1b) sit in a cuboctahedron formed by
Ag/Al4(12)) (Figure 3(b)). The Ag/Al3(12i) sites cap all of
the other faces of the eight tetrahedra. The Eu atom sits in
the center of a polyhedron shown in Figure 3(c). The Ag/
Alatoms surrounding Eu form five squares. The Eu atom
centers a square formed by Ag/Al4(12j) atoms, which is
“sandwiched” by two larger squares formed by Ag/Al3-
(12i) atoms and two smaller squares formed by Ag/Al2-
(8¢g) atoms. Selected interatomic distances are listed in
Table 3. These distances are calculated from lattice para-
meters from powder data and atomic positions from

(27) Hamilton, W. C. Acta Crystallogr. 1965, 18, 502.

(28) Cordier, G.; Czech, E.; Schifer, H. J. Less-Common Met. 1985,
108, 225.

(29) Haussermann, U.; Svensson, C.; Lidin, S. J. Am. Chem. Soc. 1998,
120, 3867.

(30) Pearson, W. B. Z. Kristallogr. 1980, 152, 23.
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Table 1. Summary of Crystal Structure Refinement Parameters of the
Annealed “EuAg; sAl; 5” Sample

space group Pm3m (No. 221)
Z 3
Rietveld

refinement methods single crystal

a=28.70063(6) A a=28.7208(10) A
EUAg3.67(3)A17.33(3) EUAg3.5(2)A17.5(2)

lattice parameters
empirical formula

volume 658.645(9) A’ 663.24(13) A

26 range 10.00°-90.00° 4.68°-53.26°

goodness-of-fit 1.354 1.178

R indices R, =0.0285 R1=10.0599 (I > 20(1))
Ry, = 0.0374 wR2 = 0.0963 (I > 20(I))
Rexp = 0.0322 R1 =10.0937 (all data)
Ry =0.024 wR2 = 0.1039 (all data)

reflections collected 2207

independent 181 (Rin = 0.2145)

reflections
index ranges —9=<h=s1];—-11=
k=<8,-9=<i=<11

largest diff. peak/hole 1.809/—1.777¢"/ A3

single crystal data. It shows that the Ag/Al—Ag/Al dis-
tances are not uniform in this structure: those involving
Ag/Al3(12i) (ca.2.63—2.77 A) are shorter than the others
(>2.87 A). These distances in the BaHg;;-type phase
are comparable to those observed in BaCd;;-type Eu-
Anglll—x~9

Several variants of the BaHg; -type structure have been
reported for ternary aluminides and indides.'®*"** The
variances occur in two aspects: the 1a (0, 0, 0) site being
stuffed with metals, for example, Ag, Au, Pd, or In; and of
splitting the 127 site. We also introduced these two
variances to our refinement of the BaHg |-type structure
to see whether we could obtain any improvements. Stuff-
ing the 1a with Ag gave a negative occupancy on this site.
Allowing 12; site splitting lowered the R values (Rl =
0.0578, wR2 = 0.0889), but according to a Hamilton
test,”” this change is not a statistically significant im-
provement. Moreover, the split 12 sites are problematic:
they have much higher uncertainties in atomic coordi-
nates (see SI Tables S1 and S2). Therefore, our BaHg; -
type phase does not have these reported structural vari-
ances.

EDS and Homogeneity Range. Although powder XRD
can detect only the BaHg;-type structure in the annealed
“EuAg;.sAl; 57 sample, its SEM image (Figure 4) reveals
that it is not a completely homogeneous phase, which
explains why it was difficult to extract good-quality single
crystals for XRD. Figure 4 shows a light-gray back-
ground (e.g., spots 3, 4, 5, and 6, the major phase)
including some patches (the minor phases) in different
colors: darker gray (e.g., spots 1 and 2), white (e.g., spot
7), gray with white outline (e.g., spot 8), and black (e.g.,
spots 9). The compositions on spots 1 —9 were analyzed by
EDS and are listed in Table 4. The light-gray background
is the dominant phase, which is the BaHg;-type phase
according to powder XRD. The sampling spots (3—6) on
the gray background give compositions with small varia-
tions but also all are very close to EuAg, oAl o, which

(31) Gladyshevskii, R. E.; Cenzual, K. J. Alloys Comp. 1996, 240, 266.
(32) Li, B.; Corbett, J. D. Inorg. Chem. 2006, 45, 3861.
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Table 2. Atomic coordinates and Isotropic Displacement Parameters from Crystal Structure Refinement of the Annealed “EuAg; sAl; 5” Sample

Rietveld refinement

single crystal refinement

atom Wyck. X y z coordinates SOF Uiso /A2 coordinates SOF Uiso /AZ
Eul 3d 12 0 0 1 0.0051(3) 1 0.014(1)
Agl 15 2 12 12 1 0.0065(6) 1 0.030(2)
Ag/A12 8g X X X x = 0.1640(1) 0.416/0.584(4) 0.0146(5) x = 0.1658(4) 0.41/0.59(2) 0.035(2)
Ag/Al3 12i 0 y y y = 0.3453(2) 0.204/0.796(3) 0.0114(5) y = 0.3444(5) 0.23/0.77(2) 0.023(2)
Ag/Al4 12 12 y y y=02661(1)  0.353/0.647(2)  0.0060(4)  y =02667(3)  0.30/0.70(1)  0.015(2)

Figure 3. Crystal structures of BaHg;;-type EuAg, Al —.: (a) unit cell;
(b) the coordination environment of Agl(1b); and (c) the coordination
environment of Eul(3d). Blue: Eul(3d); red: Agl(1b); yellow: Ag/Al2(8g);
green: Ag/Al3(12i); orange: Ag/Al4(12)).

Table 3. Selected Interatomic Distances of the BaHg,{-Type
EuAg,Aly;_,, Calculated from the Lattice Parameters (Rietveld) and
Atomic Positions (Single Crystal) of the Annealed “EuAg; sAl; 5” Sample

atom pair distances /A
Eul— Ag/Al2 (x8) 3.5521(4)
Ag/Al3 (x8) 3.288(2)
Ag/Al4 (x4) 3.281(4)
Agl— Ag/Al4 (x12) 2.870(4)
Ag/AI2— Ag/AI2 (x3) 2.885(8)
Ag/Al3 (x3) 2.629(5)
Ag/AI3— Ag/AI3 (x2) 2.708(8)
Ag/Al4 (x4) 2.771(2)
Ag/Al4— Ag/Al4 (x4) 2.870(4)

indicates greater Ag contents than obtained from XRD
refinements. This deviation could, again, be attributed to
the heterogeneity of the product, which affects the SOF
and thus the composition in refinement.

The minor phases do not manifest themselves in powder
XRD, but their structures can be deduced by examining
their compositions. The composition at spot 7 (the white
patch) is Eul'02(2)Ag531(4)A15_67(6), which falls in the homo-
geneity range (EuAgsAls—EuAggAls) of the BaCd,-type
phase.’ The gray patches with white outline (spot 8) have
the compositions close to Eu(Ag,Al),. This is probably a
BaAly-type phase, which occurs frequently in RE—
Ag—Al ternary systems.® It is noteworthy that a small
amount of Si was found in this phase, with its atomic
fraction smaller than 0.06. The Si was identified as an
impurity of the Al foil. It was detected only in the BaAly-
type phase but not present in any other phases. The black
patches (spot 9) are almost pure Al. The identity of the
darker gray patches (spots 1 and 2) cannot be determined
at this stage. They are probably closely related to the
BaHg,-type phase because they also have EuAg Al

Figure 4. SEM image of the “EuAg; sAl; 5" sample annealed at 500 °C
for 40 days. Elemental analysis with EDS was performed on the nine spots
marked as 1-9.

Table 4. EDS Composition Analysis Results of “EuAgsz sAl; 5” Annealed
at 500 °C for 40 Days (Spots 1—9 are Marked in Figure 4)

atomic fraction

structure
spot Eu Ag Al composition type
1 0089(1) 0303(2) 0608(5) EU1_07(2)Ag3_63(3)A17'30(6) unknown
2 0087(1) 0308(2) 0605(5) Eul_05(2)Ag3_69(3)A17_26(6)
3 0088(1) 0329(3) 0583(5) EU1_05(2)Ag3_95(3)A17_00(6) BaHg”
4 0090(1) 0322(3) 0588(5) ELI1‘Og(z)Ag3.g7(3)A17.05(6)
5 0086(1) 0333(3) 0581(5) Eu1_03(2,Ag4_00(3)A16_97(6)
6 0086(1) 0328(3) 0586(5) EU1_03(2)Ag3_93(3)A17_04(6)
7 0085(2) 0443(3) 0472(5) Eu1402(2)Ag5.31(4)A15,67(6) BaCd11
8§ 0.205(1) 0.132(2) 0.663(6) EuyoanAgoesAlssa BaAl
9 0001(1) 0014(1) 0984(4) Ag040]4(1)A104984(4) fCL‘

“EDS shows that there is also some Si (atomic fraction <0.06)
present in and only in the BaAly-type phase. (That Si appears to be an
alloying element in the Al foil.)

compositions but they are slightly richer in Al (ca. Eu-
Agz7Al;3) than the dominant BaHg;;-type phase.
Further investigations are necessary.

The annealed “EuAg;Aly” and “EuAg4Al;” samples
were also analyzed with SEM and EDS (SI). The BaHg; ;-
type phases in these two samples also give compositions
very close to EuAg, oAl; o, indicating that the BaHg;-
type EuAg,Al;;—, at 500 °C has a very narrow homo-
geneity range around EuAg,(Al;,. Moreover, in the
“EuAg4Al;” sample, the BaCd,-type and BaHg;;-type
phases are both abundant. They are clearly different in
composition: the former is EuAgsAls—EuAggAls and the
latter is EuAg, 0Al; o; that is, they strictly abide to their
homogeneity ranges.

As mentioned above, early transition metals facilitate
the formation of BaHg,-type structure in RE—Au—Al
and RE—Ag—Al systems.'” Our syntheses involved W
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Figure 5. Temperature dependency of magnetic susceptibility and reci-
procal susceptibility of the annealed “EuAg; sAl; s” sample.

(the arc welder electrode), Ti (the oxygen getter for arc
melting), and Ta (the container for annealing). However,
EDS detected none of these transition metals in the
“EuAg;Alg”, “EuAgs; sAl; 57, and “EuAgyAl;” samples.
So, under the synthetic conditions we adopted, the for-
mation of BaHg;-type EuAg, Al;,_, was not templated
by early transition metals.

Thermal Stability. The “EuAg; sAl; s” sample was sub-
sequently annealed at 600 and 700 °C, each for 10 days, in
an attempt to improve its crystallinity and homogeneity.
However, the subsequent powder patterns revealed that,
at these temperatures, the BaHg;;-type EuAg.Al;;_,
transforms into other phases. After annealing at 600 °C
(Figure 2(c)), the BaHg;-type phase remained dominant;
however, the sample was no longer “pure” because
the BaCd,-type and Th,Ni;;-type phases emerged. At
700 °C (Figure 2(d)), the BaHg;;-type phase almost
disappeared; and the BaCd;;-type and Th,Ni;s-type
phases became major phases. Therefore, besides compo-
sition, the stability of BaHg,,-type EuAg Al;,_. is also
largely dictated by temperature: at 700 °C, it is no longer
thermodynamically stable. This is one of the reasons why
BaHg;;-type RE—Ag—Al phases are less commonly ob-
served than the other phases.

Magnetometry and the Valence Electron Concentration
of BaHg,-Type EuAg,Al;;_,. The temperature depen-
dent magnetic susceptibility (y) and reciprocal suscept-
ibility (1/y) of BaHg;,-type EuAg,Al;;_, is shown in
Figure 5. Above 20 K, this phase is paramagnetic and
follows the Curie—Weiss law. At ca. 17 K, there is a
transition from paramagnetism to ferromagnetism. In the
1/x vs T curve, the data between 20 and 300 K were fitted
with the Curie—Weiss law, from which the effective
moment was calculated to be 7.95 ug. This value is very
close to the e of free Eu®' (7.94 up), indicating the
divalency of Eu in this ternary phase.

The valence electron concentration (vec) of EuAg,-
Al —,, with respect to the content of electronega-
tive metals Ag and Al, can then be calculated as:

vee = 2Dl 3520 — 318 (.18, From this
equation, the BaHg;-type phases, EuAgy (Al; o, have a
vec at 2.45 ¢ /atom. The vec values of some other

BaHg, -type ternaries are listed in Table 5. All of them

Wang et al.

Table 5. Valence Electron Concentration (vec) of Several BaHg,,-Type
Ternary Compounds”

compositions vec ref.
EuAg4.0A17.0 2.45
CaAg,Al, 2.45 28
CeAg3‘1A17_9 2.71 8k

YbPd, 1 -34Gago—7 2.25-2.61 33

“The number of valence electrons of Ce, Yb, and Pd are counted as 3,
2,and 0.

are higher than the vec of BaCd,,-type REAg Al |_, (ca.
2.10—2.30 e /atom).” Therefore, the “rule of thumb”
governing the competition between these two 1:11 phases
is that the BaHg;;-type structure is stabilized at higher vec
than the BaCd,-type structure. The same conclusion was
reached by Hiussermann® in his study of the binary
compounds BaCd;; and BaHg;; with Extended Hiickel
calculations using second moment scaling. These calcula-
tions showed that, although they are isoelectronic (both
have vec = 2.18 ¢ /atom), the maximum stability of
BaCd, occursatvec =ca.2.10e™ /atom, whereas BaHg,
is at vec = ca. 2.55 ¢ /atom, confirming that vec deter-
mines the relative stabilities of these two 1:11 phases.
However, this also raises the question for the two binary
compounds, BaCd;; and BaHg;;, themselves, namely,
why BaHg;; does not form the expected BaCd;;-type
structure? Our preliminary study shows that a reason is
related to the relativistic effect of the Hg atom, results of
which will be discussed in a separate report.
Computational Models. To study how vec affects the
stability of the BaHg;;-type EuAg.Al;;_,, it is necessary
to analyze its electronic structure through quantum mecha-
nical calculations, for which reasonable model structures
need to be built. We constructed the model structures in
the following way. The lattice parameters and atomic
positions of each model structure were taken from crys-
tallographic data (Table 1 and 2). The 3d and 15 positions
can be unambiguously filled with Eu and Ag. The site
sharing between Ag and Al on 8¢, 127, and 12; sites was
treated by lowering the symmetry from cubic to triclinic
(space group P1). The original 8g positions were then
broken into eight la positions, which were assigned with
4 Ag and 4 Al atoms (Ag/Al = 0.5/0.5). Likewise, the 127
positions were assigned with 3 Ag and 9 Al atoms (Ag/Al =
0.25/0.75) and the 12/ positions with 4 Ag and 8 Al atoms
(Ag/Al =0.33/0.67). These Ag/Al ratios are very close to
those listed in Table 2 and the resulting composition is
EuAg,Al,, which is also close to the experimental value.
Then, the “coloring problem”** needs to be addressed:
fixing the Ag/Al ratios as listed above, there are multiple
(Cs* x C1p) x €' = 7623000 where C,”" = n!/[m! x
(n—m)!]) possible assignments (or “coloring schemes”) of
Ag and Al; and we should select the one which gives the
lowest total energy. We calculated the total energies with
both LMTO and VASP upon several random coloring

(33) Grin, Yu. N.; Hiebl, K.; Rogl, P.; Godart, C.; Alleno, E. J. Alloys
Comp. 1997, 252, 88.
(34) Miller, G. J. Eur. J. Inorg. Chem. 1998, 523.
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Table 6. Total Energies of the Model Structures”

1805

Coordination Environment of the 3 E\orar per fou. Number of Ag—Al
Eu Atoms eV) Contacts per Unit Cell
Model

(red: Ag; green: Al) LMTO  VASP 5804 <290 A

1 1.38 0.89 30 54

2 1.00 0.66 36 62

3 0.58 0.37 40 66

4 0.33 0.21 44 70

5 0.00 0.00 50 76

“These models all have the same composition (EuAgsAl;) and same Ag/Al ratio on the original 8¢ (0.5/0.5), 12 (0.25/0.75), and 12/ (0.33/0.67)
positions. Models 1—4 are random coloring schemes. Model 5 is obtained by maximizing Ag—Al contacts. The total energy of model 5 is taken as

reference (0.00 eV). Details of these five models are included in the SI.

schemes (models 1—4 in Table 6). Although LMTO gives
larger energy differences between coloring schemes than
VASP, they show the same trend: the more heteroatomic
(Ag—Al) contacts in a coloring scheme, the lower its total
energy. The same trend was also discovered in the Ba-
Cd,;-type EuAg,Al,,_. in our previous study.’ Accord-
ing to this trend, we constructed model 5§ by maximizing
Ag—Al contacts (the method of maximizing Ag—Al con-
tacts was described in ref 9). Calculation shows that its
total energy is indeed lower than the four random models
as expected. Therefore, model 5 is an appropriate model
structure for BaHg-type EuAg.Al;;_,. The details of
models 1-5 are included in the SI.

DOS and COHP. The DOS and COHP curves of model
5 calculated with TB-LMTO-ASA are shown in Figure 6.
The VASP calculation also gives a DOS curve (SI), which
is very close to the one shown in Figure 6. In the DOS
curve, the 4d bands of Ag manifest as a large peak
spanning from ca. —7.5 to ca. —4.5 eV. Leaving this 4d
peak out, the overall shape of the DOS curve resembles a
parabola (the feature of a noninteracting electron gas)
with a state-deficient region (pseudogap) at ca. —0.5 to
0.5 eV, corresponding to vec = 2.32—2.58 ¢ /atom ac-
cording to a rigid band approximation. So, when vec =
2.45 ¢ Jatom (EuAgy oAl ), the Fermi level is located in
the pseudogap; and the Fermi level falls outside the
pseudogap when vec = 2.10—2.30 ¢~ /atom (EuAgsAls—
EuAgsAls).

The COHP curves for Eu—Ag/Al, Ag—Ag, and Ag—Al
contacts have relatively gradual bonding—antibonding
crossovers. At vec = 2.45 e /atom, the Fermi level is

Energy (eV)
IS

CAg
- Al
. Eu

Eu-Ag

-10 —— Eu-Al

0 10 20 30 -02 00 02 -02 00 02
DOS (per unit cell) —COHP (per bond)

Figure 6. The DOS and COHP curves calculated with model 5 using TB-
LMTO-ASA. The three dashed straight line are the locations of the Fermi
levels when vec = (from top) 2.45, 2.30, and 2.10 e~ /atom. The parabolic
dashed line shows the DOS of the noninteracting electron gas.

located in their weakly bonding regions. The Al—Al
COHP curve, however, has a very steep bonding—
antibonding crossover (i.e., Al—Al interactions switch
from strongly bonding abruptly to strongly antibonding)
and vec = 2.45 ¢ /atom locates the Fermi level very close
to the crossover (at ca. 2.55 ¢ /atom). A vec value much
higher than 2.45 e /atom will, thus, occupy states that are
strongly Al—Al antibonding and destabilize the structure.
On the other hand, if the vec is much lower than 2.45¢™/
atom, for example, at 2.10—2.30 ¢ /atom, the structure
will also be destabilized because those states that are
strongly Ag—Ag, Ag—Al, and Al—Al bonding will be
largely depleted. Therefore, the vec of 2.45 ¢ /atom is
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very close to the optimum value for the orbital interac-
tions within the Ag/Al framework of the BaHg;;-type
EuAg,Al;;—,. By comparison, the vec value that opti-
mizes Ag/Al—Ag/Al interactions in BaCd,;-type Eu-
Ag Alj—, is 2.30 ¢ /atom.” This explains the rule
governing the competition between the BaHg;;- and Ba-
Cd;;-type structures in EuAg,Al;;_, ternary systems: the
BaHg;-type structure is favored at higher vec (ca. 2.45¢/
atom) than the BaCd,-type structure (ca. 2.30 ¢ /atom).

Conclusions

The BaHg;;-type EuAg,Al;;_, phases were synthe-
sized and characterized. Temperature has important ef-
fects on this phase: annealing at 500 °C gives a “pure
phase”, while it transforms into BaCd;;- and Th,Ni;;-
type phases at 600 and 700 °C. Composition is also
pertinent: the cubic BaHg;;-type structure can only be
obtained within a narrow phase around EuAg,Al;,
which gives a vec of 2.45 ¢ /atom. This value is higher

Wang et al.

than the vec of the BaCd;;-type EuAg,Al;;—, phases
(2.10—2.30 ¢ /atom). First principles electronic structure
calculations were performed with a model structure built
by simulating crystallographic results and maximizing
Ag—Al contacts. The calculation results explained why
the BaHg;-type structure forms at higher vec value than
the BaCd;;-type structure in the EuAg,Al;;_, system.

Acknowledgment. This work is supported by NSF DMR
02-441092 and 06-05949. We thank Dr. Sumohan Misra and
Prof. Vitalij K. Pecharsky for magnetization measurements.
We also thank Prof. Susan E. Latturner for her valuable
discussions and suggestions.

Supporting Information Available: The results of single crystal
refinement with 12 site splitting, the SEM and EDS results of
the annealed “EuAg;Alg” and “EuAg,Al;” samples, the details
of models 1—5, the DOS curve of model 5 from VASP calcula-
tion, and the powder pattern of the NIST Si powder (PDF). This
material is available free of charge via the Internet at http://
pubs.acs.org.



